
HINDSIGHT: An R-Based Framework Towards Long Short Term
Memory (LSTM) Optimization

Konstantinos Kousias
Simula Research Laboratory

Norway
kostas@simula.no

Michael Riegler
Simula Metropolitan Center of Digital Engineering

Norway
michael@simula.no

Özgü Alay
Simula Metropolitan Center of Digital Engineering

Norway
ozgu@simula.no

Antonios Argyriou
University of Thessaly

Greece
anargyr@uth.gr

ABSTRACT
Hyperparameter optimization is an important but often ignored
part of successfully training Neural Networks (NN) since it is time
consuming and rather complex. In this paper, we present HIND-
SIGHT, an open-source framework for designing and implementing
NN that supports hyperparameter optimization. HINDSIGHT is
built entirely in R and the current version focuses on Long Short
Term Memory (LSTM) networks, a special kind of Recurrent Neural
Networks (RNN). HINDSIGHT is designed in a way that it can eas-
ily be expanded to other types of Deep Learning (DL) algorithms
such as Convolutional Neural Networks (CNN) or feed-forward
Deep Neural Networks (DNN). The main goal of HINDSIGHT is
to provide a simple and quick interface to get started with LSTM
networks and hyperparameter optimization.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Theory
of computation→ Random search heuristics; •Networks→Mo-
bile networks;

KEYWORDS
Deep Learning, Long Short Term Memory networks, hyperparame-
ter optimization, Manual Search, Random Search

ACM Reference Format:
Konstantinos Kousias, Michael Riegler, Özgü Alay, and Antonios Argyriou.
2018. HINDSIGHT: An R-Based Framework Towards Long Short Term
Memory (LSTM) Optimization. In MMSys’18: 9th ACM Multimedia Systems
Conference, June 12–15, 2018, Amsterdam, Netherlands. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3204949.3208131

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MMSys’18, June 12–15, 2018, Amsterdam, Netherlands
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5192-8/18/06. . . $15.00
https://doi.org/10.1145/3204949.3208131

1 INTRODUCTION
The need for understanding and capturing temporal effects in
time-series data has led to the growth of Recurrent Neural Net-
works (RNN) popularity. Common time-series forecasting chal-
lenges include the AMS 2013-2014 Solar Energy Prediction Contest1,
where the problem was to predict the solar energy consumption
based on meteorological forecasts, and the Global Energy Forecast-
ing Competition 20122, a power generation problem given wind
predictions. Unlike traditional feed-forward architectures, RNN in-
troduce feedback loops that allow information to persist or vanish
from one network to another. The connection between the present
and the past is crucial for recognizing patterns and motifs. The
innovative and unique design of RNN has tremendously increased
their popularity in fields like image captioning, speech and text
recognition [9, 11, 17].

Despite of all the advantages mentioned above, authors in [3]
highlight a major drawback. Using theoretical but also empirical
evidence, they show that RNN lack the ability to learn tasks that in-
volve long-term dependencies. This is where Long Short TermMem-
ory (LSTM) networks come into play [12]. LSTM networks are a
special type of RNN that can handle such dependencies and carry on
information for long intervals. Throughout the last decade, LSTM
networks have been proved a handy tool in the Deep Learning (DL)
community and are currently used for Artificial Intelligence (AI)
problems that require long range memory. Such examples include
reinforcement learning, handwriting recognition and tasks requir-
ing precise timing that traditional RNN architectures are unable to
solve [2, 7, 8, 10].

A regular LSTM architecture is comprised of a series of con-
nected cells named memory blocks. An overview architecture of
a memory block can be seen in Figure 1. Each of these cells has
three main mechanisms responsible for exploiting network’s mem-
ory, known as gates. A forget gate multiplies the input xt at the
current time step with cell’s previous state ht−1. That way, it re-
moves information from the cell that is redundant and optimizes
the overall performance of the network. On the contrary, an input
gate is responsible for adding information that is valuable for the
memory block. Involving a sigmoid and a tanh function, it uses
multiplication and addition operations to ensure that no redundant

1www.kaggle.com/c/ams-2014-solar-energy-prediction-contest
2www.kaggle.com/c/GEF2012-wind-forecasting

381

http://www.acm.org/publications/policies/artifact-review-badging#available

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

σ σ σ

×

× ×

+

tanh

tanh

xt

ht

ht-1

Figure 1: An illustration of a cell ormemory block. Circles serve as
point wise operations while boxes represent Neural Networks (NN)
layers.
information has been stored in the cell. Last part of the architecture
is the output gate which, by using similar functionality as the forget
gate, decides a cell’s final state. As its name implies, it is the link
between two consecutive cells.

Hyperparameter optimization in DL is critical since the perfor-
mance of every NN architecture is highly connected on the selection
of the hyperparameters. Several studies have been conducted to
determine efficient algorithms that optimize the set of hyperparam-
eter values [6, 15]. Among the most popular approaches include
Manual Search (MS), Grid Search (GS), Random Search (RS) and the
probability-based Bayesian Optimization (BOA) algorithm [4, 22].
Nevertheless, hyperparameter optimization is rarely applied as it
is time-consuming and increases significantly the computational
complexity of the models.

Since LSTM networks have shown such great promise, in this
paper, we introduce HINDSIGHT, a comprehensive tool that we
develop and offer to the community for experimentation with LSTM
networks. The purpose of HINDSIGHT is first, to minimize the
complexity of using LSTM networks, and second, to optimize the
selection of the LSTM hyperparameters in different application
domains. Below, a list of the main contributions of this paper is
outlined:
• HINDSIGHT is an open-source framework written exclu-
sively in R.
• It allows for easy and quick experimentation with LSTM
networks in a wide variety of fields.
• HINDSIGHT supports hyperparameter optimization, thus
allowing users to easily explore the best choice, depending
on the application.

In the remainder of the paper, the structure of HINDSIGHT is
described and an overview of the hyperparameter optimization
algorithms is given. Prior to the conclusion and future work, a use
case from the networking domain is presented.

2 HINDSIGHT
The code of HINDSIGHT is written in R and can be found in the
Bitbucket repository3. The source files are organized as follows: A
list of five functions that compose HINDSIGHT, a proof of concept
test script, a .RData image of two example datasets (training and
testing) and a README.md file. In the latter, one can find details
3https://bitbucket.org/konstantinoskousias/hindsight

on how to install and use the framework. HINDSIGHT version 1.0
supports only LSTM networks but is designed in a versatile manner
so it can be expanded to other DL architectures.

HINDSIGHT is based on the services of two packages and li-
braries in R. The backbone of HINDSIGHT is the CRAN Keras
package4. Keras is a high level Neural Networks (NN) API which
allows for dynamic experimentation with DL approaches such as
feed-forward Deep Neural Networks (DNN), Convolutional Neu-
ral Networks (CNN), RNN and so forth. It supports multiple back-
end environments including Theano and Tensorflow. HINDSIGHT
current version is configured to run on Tensorflow by using the
install_keras() function. It can be operated with or without
Graphical Processing Unit (GPU) support. To install the GPU ver-
sion, the ’gpu’ keyword must be included as:

i n s t a l l _ ke r a s (t e n s o r f l ow = " gpu ")

Prior to the installation, all the Cuda and CUDNN libraries have
to be installed and a GPU with compute capability higher than
3.0 is required. HINDSIGHT is a wrapper to Keras and does not
introduce any novel functions but rather using the existing libraries
to provide easy experimentation with LSTM networks.

HINDSIGHT is designed in a way so that it is compatible with
both univariate and multivariate time series prediction problems. A
widespread use case that illustrates the former is forecasting in stock
price market. There exists a recent trend towards DL approaches in
fields such as economics, climatology and medicine. The concept
of exploiting information from the past to predict the future seems
to improve the performance of NN. Framing univariate data for
LSTM is relatively simple since a single variable is involved [12].
Multivariate data consisting of multiple variables are more complex
in terms of required preprocessing. HINDSIGHT discloses all pre-
liminary steps required to bring data in the appropriate format and
allows for quick and easy experimentation with LSTM networks.

The hindsight function forms the nucleus of HINDSIGHT. A
list of the function’s input parameters, a short description and
the default values are summarized in Table 1. The fields missing
default values are compulsory and have to be set during the call
of hindsight. In the case of multivariate data, the formatting re-
quirements for both training and testing sets is as follows. The
dependent variablemust always reside in the first column of the
dataframe followed by the set of regressors. Ordering of the latter
is of no significant importance.

Data Preprocessing
After both training and testing datasets are in the required format,
the time_series function is called. The input parameters set is
comprised of the data, nfeatures and nlags. nfeatures is the
number of features to be used as exogenous variables and if this
value is smaller than the available data features, the first features,
starting from the left are selected. The nlags parameter defines the
number of steps to ’look back’ in time. The selected value depends
on the nature of the problem and fully determines the shape of the
data. For example, in text recognition where learning long-term
dependencies is crucial, a nlags value bigger than one is needed.
A pseudo-code version of time_series is presented in Listing 1.

4https://cran.r-project.org/web/packages/keras/keras.pdf

382

HINDSIGHT: An R-Based Framework Towards Long Short Term Memory (LSTM) OptimizationMMSys’18, June 12–15, 2018, Amsterdam, Netherlands

Table 1: HINDSIGHT input parameters. Parameters in bold are
available for optimization.
ID Parameter Short Description DEF
1 training Training dataset -
2 testing Testing dataset -
3 nfeatures No. features -
4 nlags No. time steps -
5 units No. neurons for input layer 10
6 units1 No. neurons for hidden layer 1 10
7 units2 No. neurons for hidden layer 2 10
8 units3 No. neurons for hidden layer 3 10
9 lr Learning rate 0.001
10 nepochs No. epochs 50
11 bs Batch size 32
12 nlayers No. layers 1
13 opt List of optimization algorithms 1
14 activation Activation function relu
15 valsplit Validation split 0.1
16 patience No. epochs before early stopping 10
17 rs Selection between MS and RS FALSE
18 niter No. iterations (only for RS) 20
19 units_l units <upper limit> 256
20 units1_l units1 <upper limit> 256
21 units2_l units2 <upper limit> 256
22 units3_l units3 <upper limit> 256
23 lr_l lr <upper limit> 0.01
24 nepochs_l nepochs <upper limit> 150
25 bs_l bs <upper limit> 128
26 nlayers_l nlayers <upper limit> 4
27 opt_l opt <upper limit> 4

In short, for nlags equal to one, the endogenous variable will be
shifted one position down and concatenated as a new column in the
dataset. For larger values, the shift function will be applied to the
complete set of features that is defined by nfeatures. All resulting
Not Available (NA) values are eliminated and removed permanently
from the data. The number of features after time_series is called
equals to nlags*nfeatures + 1. Finally, each dataset is split into
two separate matrices/arrays (one consisting of the dependent vari-
able and one of the regressors) as required by the Keras API.

Designing Neural Network Architectures
In the following, the LSTM design phase is described in depth and
a short overview of the hyperparameters is presented. The function
responsible for the NN part in HINDSIGHT appears under the name
of lstm. First, an LSTM sequential model is created via:

model <− ke r a s _model_ s e q u e n t i a l ()

Next, by using the pipe operator %>%, new layers are added in the
LSTM network. The first layer is called input layer. The majority
of times, the number of neurons comprising the input layer equals
the number of features in the data. Since the above statement is
not a principle, experimentation with a diverse number of neurons
is allowed by tweaking the units hyperparameter (see Table 1).
The input_shape argument defines the shape of the input layer
and equals to c (nlags, nfeatures). In a similar fashion, the hidden
layers are added next. HINDSIGHT version 1.0 supports LSTM
architectures up to three hidden layers which is sufficient to solve
most learning problems. Hyperparameters units1, units2 and

Algorithm 1: time_series: Preprocessing data for LSTM.
1 function time_series (data, nlags, nfeatures)
2 for i = 1; i < nlags do
3 for j = 1; j < nfeatures do
4 if i == nlags then
5 data[’feat_j(t)’] <- Shift data[j] i positions down

break
6 end
7 else
8 data[’feat_j(t-(nlags − i))’] <- Shift data[j] i

positions down
9 end

10 end
11 end
12 for k = 1; k < nfeatures do
13 column_names(data)[k] = ’feat_k(t-nlags)’
14 end
15 Remove last N = nlags rows from data comprising of NA

values

units3 define the number of neurons for each of the hidden layers
respectively. Hyperparameter nlayers defines the number of layers
with a range between 1 (only one input layer) and 4 (one input layer
and three hidden layers). Last, the output layer is added by typing
the below command:

l a y e r _ dense (u n i t s = 1 , a c t i v a t i o n = " r e l u ")

As for the activation function, relu is selected since it converges to a
solution faster [14]. Other popular approaches include the sigmoid,
softmax and linear function, with softmax mostly used in binary
classification problems. activation is used for selecting between
the activation functions.

During the compilation phase, the loss function, metrics and
optimization algorithm are defined.

Error Metrics. The Mean Absolute Error (MAE) is used as the
loss function of the model. It is described as the sum of residuals
divided by the number of samples in the data. As for the metrics,
the Mean Absolute Percentage Error (MAPE) is selected, which
measures the size of error in a percentage fashion. Root-Mean-
Square Error (RMSE) can be also used instead as an alternative.

Gradient Descent (GD) is one of the most prominent algo-
rithms used for NN optimization. Various different approaches to
optimize GD have been proposed, targeting on exploiting algo-
rithm’s performance to the full potential. Evaluating and selecting
between them though is not always an easy task, as most of the
times they are used as black boxes. Below, a list of the GD optimiza-
tion algorithms that HINDSIGHT supports is presented.

Optimization algorithms. StochasticGradientDescent (SGD)
optimizer has recently gained popularity with scientists finding ap-
plication to large-scale and sparse Machine Learning (ML) problems
in fields as text classification and natural language recognition. SGD
adopts an iterative method for minimizing the objective function
and is primarily known for its efficiency and ease of implementa-
tion. It is used as the default optimizer for HINDSIGHT. Adam,
comes from adaptive moment estimation, is an extension of SGD

383

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

which has recently found application to DL fields like computer vi-
sion [13]. Adam requires minimum computational memory during
optimization, its hyperparameters are straightforward to tune and
it is known for converging to a solution relatively fast. Adagrad,
stands for adaptive gradient, optimizes GD by updating the learn-
ing rate with respect to the appearing frequency of the parameters.
It is well suited for dealing with DL problems that involve sparse
data. In [5], authors found that Adagrad improved the robustness
of SGD and used it for training large scale NN at Google. Adagrad
was also used in text classification with great success [19]. Last,
RmsProp is a still unpublished learning rate optimizer [23] that
was developed to resolve Adagrad’s radically diminishing learning
rates. lr hyperparameter can be used to adjust the learning rate
for each of the optimization algorithms.

Training and Validation
The LSTM model is trained by using the fit function available
in CRAN. The hyperparameters to be tuned during this phase are
nepochs and bs. Validation split defines the percentage of data
that is used for validating the training data. Note that, the data is
never shuffled before training and the percentage always reflects
the last portion of samples. For example, a validation split equal to
0.1means that the last 10% of the data will be used as the validation
set. Validation split can be adjusted with the valsplit parameter.

During the training-validation phase, the early stopping call-
back is exploited to avoid overfitting and decrease the total running
time. With early stopping, the training of a NN model stops when
the monitored error metric has stopped improving. A critical pa-
rameter to be specified when using early stopping is the number of
epochs where no improvement is observed, called patience. Patience
is basically a way of controlling the error sensitivity during train-
ing. For example, a patience of value zero means that training will
stop if the observed error increases from one epoch to the next. In
[21], the authors discuss about the trade-off of using slow stopping
criteria (large value for patience) and the total training time. They
conclude that slower stopping criteria decrease the generalization
error but lead to increased training time and possibly overfitting.
Therefore, in HINDSIGHT current version 1.0, patience parameter
is set to five as default but can be adjusted as needed.

Last, the evaluate function is called on the testing data and
returns the MAE. A snippet of the code can be seen below:

l o s s = model %>% ev a l u a t e (t e s t _ 2 , t e s t _ 1)

In case where RS has been selected, a table (gridtable) com-
prised of each LSTM configuration and the testing loss is returned
to user’s R workspace. A pseudo-code version of lstm is presented
in a similar fashion as the time_series function in Listing 2.

Saving and Loading LSTM Models
The underlying Keras library provides built-in functions to save
and load NN models on demand. The corresponding R command
can be seen in the snippet below:

save _model_ hdf5 (model , ' l s tm . h5 ')

This command allows for saving the architecture, the weights of
the model, the training configuration and the state of the optimizer

Algorithm 2: lstm: Building LSTM Networks.
1 function lstm (train_1, train_2, test_1, test_2,

nfeatures, nlags, units, units1, units2, units3, lr,
nepochs, bs, nlayers, opt, activation, valsplit,
patience)

2 Create a sequential model:
3 > model <- keras_model_sequential ()
4 Add the input layer:
5 > layer_lstm (units, return_sequences = F, input_shape

= c (nlags, nfeatures))
6 Add n = nlayers - 1 hidden layers and the output layer.
7 Compile the model:
8 > model %>% compile (loss = ’MAE’, metrics = ’MAPE’,

optimizer = opt)
9 Fit the model:

10 > model %>% fit (train_2, train_1, nepochs, bs, valsplit,
callback = early_stopping (patience))

11 Evaluate the model:
12 > loss = model %>% evaluate (test_2, test_1)

in a single HDF5 file. Using saved files, the model can be loaded and
instantiated by:
model <− load_model_ hdf5 (' l s tm . h5 ')

Saving and loading DL models are useful assets when comparing
different architectures. Users are highly recommended to exploit
the stated commands when using HINDSIGHT. A save command is
placed by default at the end of the code for each LSTM model. The
path folder in which the model will be stored coincides with the
R working directory but can be easily modified using the setwd()
built-in command. Furthermore, an image of the R user workspace
is saved after each iteration as:
save . image ("HINDSIGHT . RData ")

Moreover, timers have been placed at the beginning and at the
end of the lstm function. Timing a session can be proved critical
during experimentation of deep architectures with a varied range of
hyperparameters. For example, in most DL models, time complex-
ity increases along with the number of layers in the architecture.
Other cases where timing can be beneficial is when the RS hyperpa-
rameter optimization algorithm has been selected or when timing
requirements between various GPUs need to be calculated.

3 HYPERPARAMETER OPTIMIZATION
LSTM models involve a list of hyperparameters that need to be
carefully specified during the design phase. A hyperparameter is
a variable that cannot be learned from the model but need to be
set exclusively before optimizing the actual model’s parameters.
The number of hidden layers, the number of neurons per layer and
the learning rate are a few examples of hyperparameters in DL.
Setting hyperparameters manually is not always intuitive neither
straightforward. As humans, we have hard time to visualize and
handle multi-dimensional spaces. Hyperparameter optimization is
the process of selecting an appropriate combination of hyperpa-
rameters towards improving the performance of the model. Some

384

HINDSIGHT: An R-Based Framework Towards Long Short Term Memory (LSTM) OptimizationMMSys’18, June 12–15, 2018, Amsterdam, Netherlands

of the approaches that have been proposed include MS, GS, RS and
BOA.

Manual Search (MS). As its name implies, MS is the manual
tuning of hyperparameters. It can be a trial an error process but can
also be used in the case where prior knowledge about the learning
problem exists. MS is the least efficient optimization algorithm
from the list since acquiring such knowledge a priori is rare and
laborious. On the positive side, it is a trivial approach and requires
minimum coding.

Grid Search (GS). In GS, every available combination of hyper-
parameters in the search space is used to evaluate the performance
of the model. A search space can be defined as a multidimensional
region consisting of the set of all possible solutions. A range of
values for each hyperparameter needs to be specified respectively.
GS always leads to the global optimal solution. Its biggest drawback
though, is the inability to scale with the increasing number or range
of the available hyperparameters. The computational complexity
can increase significantly, that even with a powerful computer, op-
timization can take days or even weeks. GS should only be used for
low complexity problems.

Random Search (RS). A significantly faster but slightly less
efficient method compared to GS is RS [4]. Instead of trying all
different combinations of hyperparameters, random combinations
in the search space are tried for a given number of iterations. The
more the iterations, the more likely it is to approach the optimal
solution. RS does not lead to the global optimal combination of
hyperparameters but approximates it in significantly less time. In
DL, where the space of hyperparameter combinations is huge, RS
can be proven valuable.

BayesianOptimization (BOA).BOA is a probabilistic approach
that incorporates learning to perform hyperparameter optimization
[18]. It is a well-known method that has found application to a
wide range of problems including robotics, interactive animation
and DL [22]. BOA is based on the bayes theorem where conditional
probability is used for making new predictions.

In HINDSIGHT, rs is used as a flag variable for selecting be-
tweenMS and RS. By default, rs is set to FALSE (MS). The parameter
niter (defaults to 20) specifies the number of iterations for RS. The
list of LSTM hyperparameters that are available for optimization is
summarized in Table 1 (IDs 5-13 in bold). In addition, the search
space for each hyperparameter can be implicitly specified. Param-
eters with IDs 19-27 define the search space upper limit for each
hyperparameter.

BOA is not included in the current version of HINDSIGHT (1.0)
but is in a testing phase and will become available in a future
update.

4 MONROE-NETTEST: A USE CASE EXAMPLE
To show the functionality of HINDSIGHT, a demonstration based
on a real use case from the domain of networking is presented.
In the last years, mobile ’speed’, quantified most commonly by
data rate, gained popularity as the widely accepted metric to de-
scribe Mobile Broadband (MBB) networks performance since it
is straightforward for any customer to understand that when it
comes to mobile connectivity, higher speeds are better. Brand-new
tools and applications appear in the market daily, promising to

Table 2: MONROE-Nettest features and a short description.

ID Feature Short Description
1 download_kbit Download data rate (Mbps)
2 upload_kbit Upload data rate (Mbps)
3 ping_ms Latency (ms)
4 lte_rsrp Signal strength (dBm)
5 lte_rsrq Signal quality (dB)

deliver more accurate and reliable mobile speed results. From the
end user point of view, such tools (e.g Speedtest, OpenSignal, Mo-
biperf, RTR-Nettest, etc) help them assess the performance of their
Internet connection while operators often use the statistics (e.g
Download/Upload data rate, Delay, etc) for advertising campaigns.

Mobile speed measurements are very dynamic in nature since
MBB networks exhibits daily and weekly patterns [16]. Further-
more, the mobile network operators are continuously improving
their infrastructure, resulting in long term trends in the results.
Such properties makes the mobile speed measurements a perfect
fit for showcasing HINDSIGHT.

Within the scope of this use case, we use MONROE-Nettest [16]
to collect mobile speedmeasurements in operationalMBB networks.
MONROE-Nettest is built as an Experiment as a Service (EaaS) on
top of the MONROE platform [1], [20], Europe’s first and only
open dedicated platform for experimentation in operational MBB
networks. MONROE makes it possible to conduct a wide range
of repeatable measurements in the same location, using the same
devices/modems, for multiple operators at the same time, and from
an end-user perspective. Therefore, MONROE-Nettest enables the
empirical analysis of mobile speed measurements through large-
scale experimentation in operational MBB networks.

Dataset Description. The MONROE-Nettest dataset consists of
164 samples taken between July 2017 and January 2018. training
set (July 2017 - December 2017) is composed of 139 samples while
a testing set (January 2018) of 25 samples is used during the
evaluation phase. All corrupted or false measurements that can
affect the reliability of the model are removed (e.g samples with
negative values for download/upload data rate, latency etc.). On
the contrary, measurements consisting of extreme but valid values
are not considered outliers, thus, are not removed from the data.

Features Description. The list of MONROE-Nettest features
is as follows. download_kbit and upload_kbit (converted both
to Mbps) represent the download and upload data rate, respec-
tively. Latency is given by ping_ms in milliseconds. For the above
features, the natural logarithm is used to reduce skewness and kur-
tosis of the distributions. Reference Signal Received Power (RSRP)
(lte_rsrp) represents the power of a reference received signal at
the user. Range of RSRP is between −140dBm and −44dBm. Sim-
ilarly, Reference Signal Received Quality (RSRQ) (lte_rsrq) is a
metric of the wireless channel quality, that is the ratio of RSRP
versus the total received signal power, including interference and
noise. RSRQ ranges from −19.5dB to −3dB. A complete list of the
features along with their short descriptions is shown in Table 2.

Performance Evaluation
In this section, a proof of concept example using the MONROE-
Nettest dataset is demonstrated. nlags and nfeatures are set to

385

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

Table 3: MONROE-Nettest hyperparameters values. units3 is not
provided since nlayers equals to three.

ID Hyperparameter Value
1 units 225
2 units1 188
3 units2 100
4 units3 -
5 lr 0.06
6 nepochs 22
7 bs 39
8 nlayers 3
9 opt 1

lo
ss

m
ea
n_
ab
so
lu
te
_p
er
ce
nt
ag
e_
er
ro
r

0 5 10 15 20

0.5

1.0

1.5

2.0

40

60

80

epoch

va
lu
e data

training

validation

lo
ss

m
ea
n_
ab
so
lu
te
_p
er
ce
nt
ag
e_
er
ro
r

0 5 10 15 20

0.5

1.0

1.5

2.0

40

60

80

epoch

va
lu
e data

training
validation

lo
ss

m
ea
n_
ab
so
lu
te
_p
er
ce
nt
ag
e_
er
ro
r

0 5 10 15 20

0.5

1.0

1.5

2.0

40

60

80

epoch

va
lu
e data

training
validation

Figure 2: MAE and MAPE along the number of epochs. Training
stops before the 22nd epoch since early stopping is called.
one and five respectively. A list of the hyperparameter values is
shown in Table 3. For presentation purposes, the selection of this list
is performed using MS. The upper part of Figure 2 depicts the train-
ing and validation MAE along the number of epochs. Smoothing
lines are fitted to ease readability of the plots. In the same fashion,
the training and validation MAPE is illustrated in the lower part.
One can see how the loss decreases in the first epochs, which is an
indicator that the model learns. In addition, the MAPE decreases
accordingly. Training stops during the 18th epoch where early stop-
ping is called. Users can validate the results in HINDSIGHT since
the dataset is also available in the GitHub repository5.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we presented HINDSIGHT, an R-based open-source
framework that allows for easy and quick experimentation with
Long Short Term Memory (LSTM) networks. Towards increasing
the performance of Neural Networks (NN), we introduced optimiza-
tion approaches for selecting efficient combinations of hyperparam-
eters. A use case from the networking domain was used as proof of
concept for the framework. We envision that HINDSIGHT will be
used in a wide range of fields outside the computer networking area
including multimedia, economics, medicine and many more. Future
work includes expanding HINDSIGHT to account for LSTM archi-
tectures with more than three hidden layers as well as including
BOA to the list of hyperparameter optimization algorithms.
5https://github.com/acmmmsys/2018-HINDSIGHT

6 ACKNOWLEDGMENTS
This work is funded by the Norwegian Research Council project
No. 250679 (MEMBRANE).

REFERENCES
[1] Özgü Alay, Andra Lutu, Rafael García, Miguel Peón Quirós, Vincenzo Mancuso,

Thomas Hirsch, Kristian Evensen, Audun Hansen, Stefan Alfredsson, Jonas Karls-
son, Anna Brunstrom, Ali Safari Khatouni, Marco Mellia, and Marco Ajmone
Marsan. 2017. Experience: An Open Platform for Experimentation with Com-
mercial Mobile Broadband Networks. MobiCom ’17 (2017).

[2] Bram Bakker. 2002. Reinforcement learning with long short-term memory. In
Advances in neural information processing systems. 1475–1482.

[3] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neural
networks 5, 2 (1994), 157–166.

[4] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of Machine Learning Research 13, Feb (2012), 281–305.

[5] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale
distributed deep networks. In Advances in neural information processing systems.
1223–1231.

[6] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speeding Up
Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapo-
lation of Learning Curves.. In IJCAI, Vol. 15. 3460–8.

[7] Felix A Gers, Nicol N Schraudolph, and Jürgen Schmidhuber. 2002. Learning
precise timing with LSTM recurrent networks. Journal of machine learning
research 3, Aug (2002), 115–143.

[8] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst Bunke,
and Jürgen Schmidhuber. 2009. A novel connectionist system for unconstrained
handwriting recognition. IEEE transactions on pattern analysis and machine
intelligence 31, 5 (2009), 855–868.

[9] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech
recognition with deep recurrent neural networks. In Acoustics, speech and signal
processing (icassp), 2013 ieee international conference on. IEEE, 6645–6649.

[10] Alex Graves and Jürgen Schmidhuber. 2009. Offline handwriting recognition with
multidimensional recurrent neural networks. In Advances in neural information
processing systems. 545–552.

[11] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan
Wierstra. 2015. DRAW: A recurrent neural network for image generation. arXiv
preprint arXiv:1502.04623 (2015).

[12] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[13] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[15] Dougal Maclaurin, David Duvenaud, and Ryan Adams. 2015. Gradient-based
hyperparameter optimization through reversible learning. In International Con-
ference on Machine Learning. 2113–2122.

[16] Cise Midoglu, Leonhard Wimmer, Andra Lutu, Özgü Alay, and Carsten Griwodz.
2018. MONROE-Nettest: A Configurable Tool for Dissecting SpeedMeasurements
in Mobile Broadband. Infocom CNERT (2018).

[17] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model. In Eleventh
Annual Conference of the International Speech Communication Association.

[18] Martin Pelikan, David E Goldberg, and Erick Cantú-Paz. 1999. BOA: The Bayesian
optimization algorithm. In Proceedings of the 1st Annual Conference on Genetic and
Evolutionary Computation-Volume 1. Morgan Kaufmann Publishers Inc., 525–532.

[19] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[20] Miguel Peon-Quiros, Vincenzo Mancuso, V. Comite, Andra Lutu, Özgü Alay,
Stefan Alfredsson, Jonas Karlsson, Anna Brunstrom, Marco Mellia, Ali Safari
Khatouni, and Thomas Hirsch. 2017. Results from Running an Experiment as a
Service Platform for Mobile Networks. MobiCom WiNTECH (2017).

[21] Lutz Prechelt. 2012. Early stopping?but when? In Neural networks: tricks of the
trade. Springer, 53–67.

[22] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. In Advances in neural information
processing systems. 2951–2959.

[23] Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA: Neural
networks for machine learning 4, 2 (2012), 26–31.

386

